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Figure 1: The proposed model emulates the film imaging process by mapping a digital RAW image 𝑅digital to a film scan RAW
𝑅scan. This is achieved through a sequence of operations that approximates inverting the digital capture pipeline, simulating
the scene as if photographed on film, and then applying a virtual film scanning step.
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1 Introduction
Colour-positive photographic film is prized for its distinctive hues
and pleasing tones, but many film stocks are discontinued, and their
full pipeline (film exposure followed by digital scanning) is absent
from modern workflows. Current digital emulation approaches of-
ten fall short: calibration methods using matrices and nonlinear
functions from captured pairs [Kim et al. 2012] omit the scanning
stage. End-to-end LUT fitting such as in [David 2013] emulate
colour well but often introduce interpolation artefacts and lack
transparency. Recent neural network-based models such as Film-
Net’s CNN [Li et al. 2023] demand extensive training data and
also compromise on interpretability. While differentiable methods
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can learn general parametric photofinishing [Tseng et al. 2022],
we demonstrate substantial simplification by explicitly modelling
film-specific properties. We integrate the full film pipeline into a
compact, 30-parameter analytic form, achieving LUT-level accuracy
without artefacts and exposes interpretable parameters, while fitted
efficiently from a single film roll.

2 Method
Our proposed model maps a digital RAW image 𝑅digital to an emu-
lated RAW image of the film scan 𝑅scan, as a three-stage analytic
pipeline (Figure 1):

(1) Spectral remapping𝑀digital→film. A 3 × 3 matrix converts
linear RAW triplets captured by any digital sensor 𝑅digital
into the energy that would have reached each of the three
dye layers of the target film 𝐸film. Grassmann’s law states
that a 3 × 3 matrix is sufficient to compensate for spectral
sensitivity differences.

(2) Three nonlinear response functions 𝑓𝑐 (𝑐 ∈ {𝑟, 𝑔, 𝑏}).
They are applied channel-wise to 𝐸film, yielding the film’s op-
tical density response 𝑅film. Each response function is mod-
elled with a four-parameter sigmoid applied in log-exposure
space, matching the “characteristic curves” published in man-
ufacturer data sheets [Eastman Kodak Company 2006].

(3) Film Scanner encoding𝑀film→scan. A second 3 × 3 matrix
converts optical density, illuminated by a calibrated backlight
(D50, 1000𝑐𝑑/𝑚2), into the scanner’s RAW space 𝑅scan.
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Formally,
𝑅scan = 𝑀film→scan 𝑓 (𝑀digital→film 𝑅digital)

where 𝑓 applies the three sigmoid functions 𝑓𝑐 (𝑐 ∈ {𝑟, 𝑔, 𝑏}) element-
wise to the vector𝑀digital→film 𝑅digital:

𝑅film,𝑐 = 𝑓𝑐 (𝐸film,𝑐 ) =
𝐴

1 + 𝑒−𝑘 (𝐸film,𝑐−𝑥0 )
+ 𝑦0

with four learnable parameters 𝐴, 𝑘 , 𝑥0, 𝑦0. In total, this yields 9
(𝑀digital→film) + 12 (𝑓 , 4 per 𝑓𝑐 ) + 9 (𝑀film→scan) = 30 (36 including
bias terms) parameters to optimise.

Parameters are jointly optimised via SciPy least-squares on 3168
RAW patch pairs from a 96-patch colour chart shot over a 36-
exposure film roll, under 3 illuminants and 11 exposures. We min-
imise mean squared error between predicted and scanned RAW
𝑅scan. Identity and zero initialisation is used.

3 Key Results
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Figure 2: Qualitative results on a general test image. The
film manufacturer’s proprietary emulation distorts colour,
the LUT baseline shows banding artefacts, and the proposed
model shows accurate colour rendition with no artefacts.

Despite similar average colour chart patch-wise rootmean-square
error (RMSE) values between a LUT baseline constructed directly
from the dataset and the proposed model (1.1% vs. 1.3%), visual
inspection tells a clearer story. In (Figure 2), we show images of
a general scene plus a 200% zoom of a smooth region. The film
manufacturer’s proprietary emulation feature for their digital cam-
eras produce colours that deviate noticeably from the real film scan.
The LUT baseline reproduces colour but introduces subtle banding
wherever the 3D grid must interpolate between sparse points. The
proposed model matches ground-truth digitised film closely in both
hue and tone while remaining free of artefacts, confirming that a
physics-guided formulation can achieve perceptual fidelity on par
with an unrestricted LUT.

To verify that the learned parameters are indeed grounded in
reality, we compare our post-optimisation sigmoids with curves in
the filmmanufacturer’s data sheet (Figure 3). The ordering and slope
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Figure 3: Comparison between the film manufacturer’s pub-
lished response functions and those we optimised. Note the
strong alignment in shape and channel ordering, especially
on the left-hand slope of each curve.

of the RGB channels coincide, demonstrating that the optimisation
converges to physically plausible parameters rather than overfitting
the colour chart data.

4 Applications
(1) Production compatibility. Because the model is contin-

uous (two matrices and three sigmoids), we can generate
LUTs of any resolution, which can be dropped seamlessly
into existing production pipelines to emulate a faithful “Film
look”. Alternatively, a <1KB JSON is sufficient to encode
all 30 parameters if artists opt to use the proposed model
directly over LUTs.

(2) Archival preservation. Institutions and hobbyists can digi-
tise the palette of an out-of-production film with a single
existing roll, confident that every parameter maps to a ver-
ifiable physical quantity. This is especially valuable when
long-term colour accuracy is more important than just stylis-
tic approximation.

(3) Creative authoring. Camera or software vendors may ex-
pose the four sigmoid parameters as sliders (“toe”, “shoulder”,
etc.), enabling artists to manipulate the emulation in ways
that still respect the film’s physical properties.
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